Neuropathic pain is still a serious and unsolved health problem. Activation of α7 nicotinic acetylcholine receptor (α7nAChR) is known to modulate neuropathic pain by inhibiting microglial activation and BDNF/TrkB/KCC2 signaling. We previously identified that trifluoro-icaritin (ICTF) has an attenuated effect on spared nerve injury (SNI)-induced neuropathic pain, but its potential mechanisms remain unknown. Here, the pain-related behaviors were determined by paw withdrawal threshold (PWT), CatWalk gait analysis, rotarod test, open field test and elevated plus maze test. The expression of pain-related signal molecules was evaluated by Western blot and immuno?uorescence staining. The results showed that ICTF (... More
Neuropathic pain is still a serious and unsolved health problem. Activation of α7 nicotinic acetylcholine receptor (α7nAChR) is known to modulate neuropathic pain by inhibiting microglial activation and BDNF/TrkB/KCC2 signaling. We previously identified that trifluoro-icaritin (ICTF) has an attenuated effect on spared nerve injury (SNI)-induced neuropathic pain, but its potential mechanisms remain unknown. Here, the pain-related behaviors were determined by paw withdrawal threshold (PWT), CatWalk gait analysis, rotarod test, open field test and elevated plus maze test. The expression of pain-related signal molecules was evaluated by Western blot and immuno?uorescence staining. The results showed that ICTF (5.0?mg/kg, i.p.) successfully relieved SNI-induced mechanical allodynia and anxiety-like behavior, we subsequently found there existed either positive or negative correlation between mechanical allodynia and gait parameters or rotating speed following ICTF treatment. Moreover, ICTF not only enhanced the expression of spinal α7nAChR, KCC2, CD206 and IL-10, but also decreased the levels of spinal BDNF, TrkB, CD11b, Iba-1, CD40 and IL-1β in SNI rats. Conversely, α7nAChR antagonist α-Bgtx (I.T.) effectively reversed the inhibitory effects of ICTF on SNI rats, resulting in a remarkable improvement of mechanical allodynia, activation of microglia. and suppression of α7nAChR-mediated BDNF/TrkB/KCC2 signaling. Additionally, exogenous BDNF (I.T.) dramatically abrogated both blockade of BDNF/TrkB/KCC2 cascade and alleviation of mechanical allodynia by ICTF treatment. Altogether, the study highlighted that ICTF could relieve SNI-induced neuropathic pain by suppressing microglial activation via α7nAChR-mediated inhibition of BDNF/TrkB/KCC2 signaling in the spinal cord, suggesting that ICTF may be served as a possible painkiller against neuropathic pain.