Phytochrome-Based Extracellular Matrix with Reversibly Tunable Mechanical Properties.
Adv Mater.
2019;
H?rner M,,, Raute K,,, Hummel B,, Madl J,, Creusen G,, Thomas OS,,, Christen EH, Hotz N,, Gübeli RJ,, Engesser R,, Rebmann B, Lauer J,, Rolauffs B, Timmer J,, Schamel WWA,,,, Pruszak J,, R?mer W,,,, Zurbriggen MD, Friedrich C, Walther A,,, Minguet S,,,, Sawarkar R,, Weber W,,.
Products/Services Used |
Details |
Operation |
Nucleic Acid Purification & Analysis> |
… The hydrogels were incubated at room temperature for at least 2 h in dark conditions to make sure the hydrogels were stable before use For cell culture experiments, the endotoxin was removed from the proteins using an Endotoxin Removal Kit (L00338, GenScript, China) … |
Get A Quote |
Interrogation and control of cellular fate and function using optogenetics is providing revolutionary insights into biology. Optogenetic control of cells is achieved by coupling genetically encoded photoreceptors to cellular effectors and enables unprecedented spatiotemporal control of signaling processes. Here, a fast and reversibly switchable photoreceptor is used to tune the mechanical properties of polymer materials in a fully reversible, wavelength-specific, and dose- and space-controlled manner. By integrating engineered cyanobacterial phytochrome 1 into a poly(ethylene glycol) matrix, hydrogel materials responsive to light in the cell-compatible red/far-red spectrum are synthesized. These materials are a... More
Interrogation and control of cellular fate and function using optogenetics is providing revolutionary insights into biology. Optogenetic control of cells is achieved by coupling genetically encoded photoreceptors to cellular effectors and enables unprecedented spatiotemporal control of signaling processes. Here, a fast and reversibly switchable photoreceptor is used to tune the mechanical properties of polymer materials in a fully reversible, wavelength-specific, and dose- and space-controlled manner. By integrating engineered cyanobacterial phytochrome 1 into a poly(ethylene glycol) matrix, hydrogel materials responsive to light in the cell-compatible red/far-red spectrum are synthesized. These materials are applied to study in human mesenchymal stem cells how different mechanosignaling pathways respond to changing mechanical environments and to control the migration of primary immune cells in 3D. This optogenetics-inspired matrix allows fundamental questions of how cells react to dynamic mechanical environments to be addressed. Further, remote control of such matrices can create new opportunities for tissue engineering or provide a basis for optically stimulated drug depots.,? 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
biomaterials; cell migration; extracellular matrix; mechanosignaling; optogenetics; phytochromes