In view of the tumor-inhibiting effect of α-santalol in various cancers and the role of E2F transcription factor 1 (E2F1) as an important target for anticancer research, this study investigates the relation between α-santalol and E2F1, as well as the effect of α-santalol on liver cancer progression and the corresponding mechanism. Concretely, liver cancer cells were treated with different concentrations of α-santalol. The IC value of α-santalol was determined using Probit regression analysis. Then, transcription factors that are targeted by α-santalol and differentially expressed in liver cancer were screened out. The clinicopathological impact of E2F1 and its targets were evaluated and predicted. The exp... More
In view of the tumor-inhibiting effect of α-santalol in various cancers and the role of E2F transcription factor 1 (E2F1) as an important target for anticancer research, this study investigates the relation between α-santalol and E2F1, as well as the effect of α-santalol on liver cancer progression and the corresponding mechanism. Concretely, liver cancer cells were treated with different concentrations of α-santalol. The IC value of α-santalol was determined using Probit regression analysis. Then, transcription factors that are targeted by α-santalol and differentially expressed in liver cancer were screened out. The clinicopathological impact of E2F1 and its targets were evaluated and predicted. The expressions of E2F1 and high-mobility group box 2 (HMGB2) and their correlation in the liver cancer tissues were analyzed by bioinformatics. The effects of E2F1 and HMGB2 on the biological characteristics of liver cancer cells were examined through loss/gain-of-function and molecular assays. With the extension of treatment time, the inhibitory effects of 10 μmol/L and 20 μmol/L α-santalol on cancer cell survival rate were enhanced (P?0.001). E2F1 and HMGB2 were highly expressed and positively correlated in liver cancer tissues (P?0.05). High E2F1 expression was correlated with large tumors and high TNM stages (P?0.05). E2F1 knockdown promoted the effects of α-santalol on dose-dependently inhibiting viability, colony formation, invasion and migration (P?0.05). Moreover, E2F1 knockdown reduced the IC value and HMGB2 level, while HMGB2 overexpression produced opposite effects. HMGB2 overexpression and E2F1 knockdown mutually counteracted their effects on the IC value and on the viability and apoptosis of α-santalol-treated liver cancer cells (P?0.01). Collectively, blocking the E2F1/HMGB2 pathway enhances the intervention effects of α-santalol on the proliferation, migration and invasion of liver cancer cells.